S 0TV UCID- 20624

SIGNAL PROCESSING EXPERT CODE

by

Henry S. Ames

December 1985

ort intended primarily for internal or limited external

This is an informal rep
are those of the author and

distribution. The opinions and conclusions stated
may or may not be those of the Laboratory.
Work performed under the auspices of the US. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsemeni purposes.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Depariment of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price Page
Code Range
A0l Microfiche

Papercopy Prices

A02 001-050
A03 051-100
A04 101-200
A05 201 - 300
A06 301-400
A07 401 - 500
A08 501 -600

A09 601

TABLE OF CONTENTS

1.0 Introduction

2.0 Overview of SPEC

3.0 Sample Session

4,0 Implementation of SPEC

5.0 Conclusions and Observations

6.0 Summary

Appendix A. Sample SPEC Dialogue
Appendix B, Format of English—-like Template File

Appendix C. Rule File Format

ABSTRACT

The purpose of this paper is to describe a prototype expert system
called SPEC which was developed to demonstrate the utility of
providing an intelligent interface for users of SIG, a general purpose
signal processing code. The expert system is written in NIL, runs on
a VAX 11/750 and consists of a backward chaining inference engine and
an English-like parser. The inference engine uses knowledge encoded
as rules about the formats of SIG commands and about how to perform
frequency analyses using SIG. The system demonstrated that expert
system can be used to control existing codes.

1.0 Introduction

In engineering there is a constant need to use signal processing
techniques to analyze data, and there are a variety of general purpose
codes available which can be used. Although a code may be very easy
to use each person who wants to use it must learn the specific
peculiarities of the code, perhaps in addition to learning how to do
signal processing.

The technology of expert systems suggests that expert systems can
be developed which understand how to run existing signal processing
codes thereby freeing the user to concentrate his efforts on solving
the problem instead of remembering the syntax of commands for specific
signal processing codes. Such expert systems could also be given
knowledge about signal processing so that tne systems could give less
experienced engineers guidance on signal processing issues.

It was decided that a prototype expert system, which finally
became known as the Signal Processing Expert Code (SPEC), would be
implemented to evaluate the utility of expert systems as a form of
man-machine interface. SIG was chosen as tne target signal processing
code because it contains a general assortment of signal processing
techniques and display capabilities, and has both & simple menu
interface and a command language which can se driven from a file of
commands. Potential users of SPEC were interested mostly in frequency
domain analyses so the scope of the SPEC prototype was limited to
those SIG commands which are appropr.ate for frequency analyses, such
as Fourier transform, power spectral estimasion anc filtering
commands.

2.0 Overview of SPEC

The concept of the signal processing expert code (SPEC) is shown
pictorially in figure 1. The user enters commands in an English-like
syntax to the expert system which determines a goal, generates a plan
to carry out the action, translates the plan into specific SIG
commands and sends the commands to 3IG. The entire system runs on a
VAX under the VMS operating system. SPEC is written in a LISP from
MIT, namely NIL, and SIG is written in FORTRAN. To utilize the
graphics capability of SIG, the user must use a graphics terminal
which 1s supported by SIG, such as a VT100 ~ith Retro-graphics
hardware.

The final version of SPEC consisted of about 2000 lines of LISP
code, contained 34 rules and took several minutes to complete a
request to plot an fft. Since it was only a prototype some features
were not implemented; notably, the prototype was not able to analyze
responses from SIG and did not provide the means to store or retrieve
information about data files from session t> session.

One of the objectives of this project was to NOT modify in any way
the operations of the target signal processing code, namely SIG. This
objective was attainable because SIG can read commands from a disk
file. SPEC starts and stops SIG each time commands are transferred.

[n subsequent versions of such systems it i3 hoped that the expert

Figure 1. The concept of the Signal Processing Expert Code (SPEC)

USER —® SPEC SIG

system will be able to communicate with the target signal processing
code using a pipe—-like communications scheme so that the performance
can be improved.

The protoype was developed initially to support users involved
with the frequency analysis of environmental data, such as thermal
couples and accelerometers. The functions which were included in the
prototype are summarized in Table 1. The chosen functions are only a
small part of the repertoire of SIG but were considered representative
of the capabilities that potential users might need. With these
functions the user can request the Fourier transform of a file of
data, and the system will read the file, do the Fourier transform and
plot the result.

3.0 Sample Session

In this section a sample session using SPEC is described in order
to give the reader a good understanding of the capabilities of SPEC.
The details of the dialogue are presented in Appendix A.

In the sample session, it is assumed that the user has two files
of data in his disk directory, ABC and XYZ. These files contain
voltage readings taken at equally spaced intervals of time.
Furthermore, the files already contain a header at the beginning of
each file which describes the starting time, time interval and format
of the data. Since the file contains the neader SPEC, will not ask
the user for the information.

When SPEC is started, a welcome message and prompt are displayed.
If the user wants to see the commands available, he need only type
HELP. The user responses are underlined.

WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

The user decides to do a fast Fourier transform (fft) of the data
in file ABC and to plot the result. The system then leads the user
through several assumptions which the user approves by entering Y.

? DO FFT ON FILE ABC <CR>

I WILL ASSUME THE FILE ABC CONTAINS TIME DATA ? (OK? Y OR N) Y <CR>

I WILL ASSUME THE FILE ABC IS ALREADY IN THE PROPER SIG FORMAT ?
(OK? Y OR N) Y <CR>

- L -

Table 1. Signal Processing Functions of SPEC

Read a file containing time domain data

Read a file containing frequency domain data
Fourier transform

Plot of time domain data

Plot of frequency domain data

Filter data using Bessel filter

Filter data using Butterworth filter

Inverse Fourier transform

Power spectral estimation using Welch's method

At this point SPEC generates the commands to cause SIG to read the
data file. Next the system must find out the information necessary to
do the fft.

I WILL USE ALL THE POINTS IN SIGNAL IN THE FFT ? (OK? Y OR N) Y <CR>

At this point SPEC generates the SIG commands to cause SIG to do
an fft on the data previously read. Then the systems asks a question
about the plot display, namely how to label the plot. However, in the
prototype version the SIG interface was never modified to actually

label the plots. The question is merely to indicate the capability of
SPEC.

I WILL LABEL THE PLOT TEST 2 (OK? Y OR N) Y <CR>

Finally, the system generates the plot and waits for the user to
finish reviewing the data. When the user is finished he can hit a
carriage return to cause SPEC to continue. The system plots the data
as shown in Figure A.1.

Now, the user decides to see the original time domain data in the file
ABC.

? LET ME SEE THE TIME PLOT <CR>

The system asks the same question about labeling the plot and then
displays the time data, as shown in Figure A.2.

Next, the user decides to plot the fft of nis other file XYZ. So he
first attempts to type a short version of zhe command.

? NOW DO THE FILE XYZ <CR>

Since this sentence does not contain a keyword and the previous
command was PLOT, the system assumes that the user wants to a plot of
the file. The system asks for verification of the assumption.

I DON'T RECOGNIZE ANY WORD AS A COMMAND.
DO YOU MEAN TO DO THE COMMAND PLOT 'Y OR N)? N <CR>

But the user really wants to do an FFT and PLOT it.
WHAT DO YOU WANT TO DO? FFT <CR>

The system then asks the same questions that were asked for the file
ABC and eventually displays a plot of the °ft as shown in Figure A.3.

Next the user decides to filter the data in the last file and to
display the fft of the filtered data.

7 FILTER FILE XYZ AND DO FFT AGAIN <CR>

Since the user did not specify what type of filter to use, the system
attempts to find out if the user wants to use the default filter type,
Bessel. Since the user does not know what types of filters are
available he responds with N and asks for HELP.

I WILL USE A BESSEL FILTER ON THE FILE XYZ 7 (OK? Y OR N) N <CR>

WHAT TYPE OF FILTER DO YOU WANT TO USE ON FILE XYZ? HELP <CR>

VALID RESPONSES ARE AS FOLLOWS:
DEFAULT IS BESSEL

BESSEL BESS BES

BUTTERWORTH BUTTER BUT

HIT <CR> TO CONTINUE <CR>

The system continues to ask the user questions regarding the
characteristics of the filter and the size of the fft and eventually
displays a plot of the fft of the filtered data as shown in Figure
ALY,

The user conftinues with more dialogue which is described in
Appendix A and finally decides to quit. Since the system was only
intended as a prototype, software was not written to save any of the
information about the files so the next session will not be aware of
the transactions which have occurred.

? QUIT <CR>
ALL DONE

NIL

4.0 Implementation of SPEC

A conceptual model of SPEC is shown in figure 2. The system
consists of a controller, an English-like parser, a SIG interface and
two expert systems, PLANNER and SIGEX. The expert systems use a
shared inference engine with their own set of rules.

4.1 Controller

The controller provides the shell for the modules of SPEC and
controls the order in which events occur. When the system is started,
the controller displays a prompt, reads the user input, and calls the
parser which returns a parsed sentence and a goal. The controller
then calls PLANNER which develops a suitable plan or returns an error
message. If a plan is returned to the controller, the plan 1s passed
to SIGEX one step at a time. SIGEX gathers any information needed to
formulate a valid SIG command. Finally, the controller passes the
SIGEX results to the 3IG interface which creates a properly formatted
SIG command, writes the command in a file and passes the file to SIG.

Figure 2. Conceptual Model of SPEC processing modules

ENGLISH-LIKE
| TEM-
PARSER PLATES

S——

INFERENCE ENGINE

J&)

’/////,/[RULFE/J

/ | PLANNER
/

/

 CONTROLLER |]
/L\\\\\\g\ SIGEX -

\ ‘\\ /
- ‘\\
AN

SIG INTERFACE

4.2 English-like Parser

The user controls the system by entering sentences or sentence
fragments at the keyboard. SPEC gives the appearance of
understanding the input if it is properly phrased, but, in reality,
the input is simply passed to a parser which looks for certain words
which the system recognizes as keywords. The Kkeywords are used as the
goals for PLANNER. The user can include any information he wishes and
the information will be used to set parameters which are used later.
If user does not include enough information, either PLANNER or SIGEX
will solicit the information.

When the system is started the English-like template file, which
contains keywords and associated phrases, is read into the system. A
typical template is shown in figure 3, and the format of the template
file is shown in Appendix B. When a sentence is entered by the user,
the sentence is scanned for a keyword. If such a keyword is found,
then the sentence is further matched against phrases which are
associated with that keyword.

The use of phrases allows the system to handle domain dependent
words and phrases easily and to allow synonyms. These phrases serve
as templates so that expected parameters can be assigned values from
the user input. For example, if the user types the word "TIME" after
the keyword PLOT has been typed, then the system will assign the
parameter PLOT TYPE the value TIME.

To further illustrate the operation of the parser, the template
associated with the Fourier transform command is shown in figure 3. If
the user wanted the system to do a Fourier transform on a file and
plot the result, the user could type the following sentence:

PLEASE DO AN FFT ON FILE ABC AND FILTER IT <CR>

The parser first recognizes the word FFT and ignores the preceding
words PLEASE, DO and AN as "noise" words. Then the parser looks for
phrases which match those in the template file for the keyword FFT.
The parser finds ON FILE which according to the template is equivalent
to OF FILE or FILE or FILENAME and assumes that the word following ON
FILE is the file name. So the word ABC is assigned to the parameter
SRC_FILE which is the parameter which represents the name of the
source file. Since the sentence contains a conjunction AND the
process is started over. A second goal is defined, namely FILTER.
However, since the file name is not repeated, the file name ABC is
assumed to apply to keyword FILTER. The word IT in the above sentence
is ignored as a "noise" word.

The intent of using such an English-like parser is to eliminate
the need for the user to remember a complex syntax or to wander
through a menu hierarchy. It is assumed that the user will be
familiar enough with the language of the domain so that he can
construct sentences which adequately express his intention. Several
examples of the type of dialogue the system can handle are presented
in Appendix A.

Figure 3. Typical English-like templates
((H HELP = COMMAND HELP))
((Q QUIT STOP DONE BYE = COMMAND QUIT))

((FFT (FOURIER TRANSFORM) = COMMAND FFT)
({ON FILE) (OF FILE) = SRC FILE ?)
(ON OF = QUAL ?2) -
(FILE FILENAME = SRC FILE ?)
((DATA_TYPE TIME) TIME = DATA TYPE TIME)
(FFT_SIZE (FFT SIZE) = FFT SIZE ?)
((DATA_TYPE FREQ) FREQ = BATA_IYPE FREQ)
((HEADER PRESENT)= HEADER PRESENT)
((HEADER ABSENT)= HEADER ABSENT)
(HEADER = HEADER PRESENT)
(FORMAT = FORMAT ?)
(DELTA_TIME (DELTA TIME) DT = DELTA TIME ?)
(INIT_TIME (INIT TIME) TINIT = INIT TIME ?)
(DELTA_FREQ (DELTA FREQ) DF = DELTA FREQ ?)
(INIT FREQ (INIT FREQ) FINIT = INIT FREQ ?))

- 10 ~

4.3 Inference Engine

The system contains two expert systems: PLANNER and SIGEX. Both
of these systems use the same inference engine but work on different
rules. The engine uses the rules in conjunction with data from the
user and a backward chaining search technique to reach conclusions and
execute custom LISP code routines.

4.3,1 Rules and Objects

When the system is loaded, the rules and attributes of the objects
that are referenced in the rules are read from a disk file. The format
of the rule file is shown in Appendix C. Basically, each rule
consists of the following IF-THEN-EXECUTE format:

(RULE id IF (premise) ... (premise)
THEN (conclusion) ... {(conclusion)
EXECUTE (action) ... (action))

A premise or a conclusion has the following format:
(object-type attribute value)

An object-type is a class of objects; for example, in SPEC one
object-type is a source file, referred to as SRC FILE. An object-type
may have many occurrences of object-types and whichever object is last
referenced is the current object for that object-type. For example,
if the source file being processed is ABC then the current object of
the object-type SRC_FILE is ABC.

Each object-type, and therefore its associated objects, 1is
characterized by a set of attributes. For example, a SRC FILE object
has an attribute called DATA TYPE which identifies the tyEé of data in
the file represented by the Ebject. For each attribute of an
object-type there may also be some associated information: a
procedure, a question and a range. The procedure is a function which
is executed by the inference engine when it can not find a value for
that attribute. The procedure is written by the designer and must be
written in LISP.

If there is no procedure specified, then the engine will attempt
to solicit the value of an attribute from the user by printing a
question. 1If the designer has included such a question with the
attribute then that question is used; otherwise the system will try to
formulate a question. Finally, if the user is asked for a value of an
attribute, the system will verify that the value is one of an
acceptable range of values if the designer has included such a range.

An action has the following format :
(function-name any text)
Where function-name is the name of a function which will be given
control after all of the attributes of the object-types in the

conclusions are set to the indicated values. The entire expression
will be passed to the function.

- 11 -

4.3.2 Operation of the Inference Engine

When SPEC is started it passes to the inference engine a goal
which is a conclusion in at least one rule. The engine first checks

to see if the the goal is already true. If so, the request is
terminated.

If the goal is not already true, then the engine finds all the
rules whose conclusions will make the goal true. Next, the engine
selects the first rules in the list and tries to determine if the
premises which make up the rule are true. There are two ways that a
premise will be considered true. First, a premise will be true if the
value of the attribute of the current object of the object-type
referenced in the premise is equal %o the value in the premise of the
rule. Second, if the value in the premise statement is the special
symbol "?", then the premise will be true if there is ANY value
present for the attribute of the current cobject of the object-type
referenced. If a3ll the premises are ftrue, then the attributes of the
current object of the object-type named ir the conclusions are set to
the value specified in the conclusions. Finally, any actions
specified in the rule are executed.

If the premises are not true, the rule is not true and other rules
are tried. However, if the attribute of a premise is not known, then
the backward chaining search is started. The system uses the premise
as the new goal and attempts to determine if the new goal is true. If
the system can not find any rule to conclude a goal, then it has two
options. If there is a procedure assigned to attribute in the
premise, the procedure is executed. If there is no procedure, then
the user is asked for the value of the attribute in the premise. If
there is a question associated with the attribute and object-type then
the system uses the question as the prompt.

4.4 PLANNER

The purpose of the PLANNER is to convert a goal into a sequence of
subgoals which will be passed to SIGEX. After the controller calls
the parser on the English-like input it calls PLANNER for each goal
recongized by the parser. PLANNER uses the inference engine described
in section 4.3 and its own set of rules tc reach the goal. Typical
PLANNER rules for the FFT goal are shown n figure 4.

For example, if the user requests the system to perform an FFT on
his data, the PLANNER is passed the goal (PLAN NL FFT). When the
PLANNER looks for rules which will satisfy this goal, it finds two
rules PR31 and PR32. If the system has a.ready read the requested
data file, then the PLANNER uses rule PR3 to setup the subgoal GOAL?

which is reformated by the controiler int: the following goal for
SIGEX:

{SIGEX GOAL FFT)

[n this case, the plan i3 really simple; it consists of one
subgoal which is the same as the initial request. In addition,
PLANNER assigns the number of the current source file to the parameter
SRC DS which will be used later by the SI interface.

Figure 14, Typical PLANNER rules

(RULE PR31 IF (SRC_FILE ANY TS *)
THEN (PLAN NL FFT)
(PLAN GOAL1 (FFT (SRC_DS SRC_FILE CURRENT_TS)))
EXECUTE) -

(RULE PR32 IF (SRC FILE DATA TYPE TIME)
THEN (PLAN NL FFT)
(PLAN GOAL1 (TSREAD))
(PLAN GOAL2 (FFT (SRC_DS SRC_FILE RAW_TS)))
EXECUTE)

- 13 «

I, however, the system has NOT read the source data file, then
the PLANNER uses rule PR32 to setup the subgoals GOAL1 and GOALZ2 which
are reformated by the controller into the following goals for SIGEX:

(SIGEX GOAL TSREAD)
(SIGEX GOAL FFT)

The plan consists of two subgoals: first, read the file; and
second, formulate an FFT using the current file as the source file.

In addition, PLANNER assigns the number of the current source file to
the parameter SRC_DS.

4,5 SIGEX

The purpose of SIGEX is to acquire all the parameters which will
be needed by the SIG interface to create an actual SIG command.
Because the planning of the entire request is done by PLANNER, the
sequence of subgoals generated by PLANNER is correct for the initial
request. Therefore, the rules for SIGEX can be designed to focus on
the details of SIG commands and NOT on how to get a sequence of

commands to happen in the right order. Typical rules for SIGEX are
shown in figure ©=.

After the controller calls PLANNER it puts each subgoal returned
by PLANNER in the proper format and passes the subgoal to SIGEX. When
SIGEX receives a subgoal it tries to find all the rules which will
satisfy the subgoal. The rules contain premises which force the
inference engine to ask the user for speci®ic data if the data is not
already known.

For example, if PLANNER requests that 3IGEX perform an FFT, SIGEX
through its rules and finds that rule SR5 satisfies the subgoal. The
rule causes the system to ask the user for the size of the FFT which
is assigned to the parameter FFT SIZE. The parameter FFT_SIZE is
passed indirectly back to the controller s» that it can be used later
by the SIG interface.

4,6 SIG Interface

The purpose of the SIG interface is to assemble all the parameters
needed for a SIG command and to actually send the command to SIG. The
interface consists of a table which contains a list of all the
parameters SIG needs for each SIG command and the order in which the
parameters must be passed to SIG. It alsc contains a list of all

parameters which must be reset as a result »f successfully completing
a SIG command.

(RULE SR1

(RULE SR2

(RULE SR5

Figure 5. Typical SIGEX rules

IF (SRC_FILE HEADER PRESENT)
(SRC_FILE NAME ?)
THEN (SIGEX GOAL TSREAD)

(SIGEX SIG_COMMAND (TSREAD (NAME SRC_FILE NAME)))
EXECUTE)

IF (SRC_FILE HEADER ABSENT)
(SRC_FILE NAME ?)
(SRC_FILE DELTA TIME ?)
(SRC_FILE INIT TIME ?)
(SRC FILE FORMAT ?)
THEN (SIGEX GOAL TSREAD)
(SIGEX SIG _COMMAND (TSREADW (NAME SRC_FILE NAME)
(DELTA_TIME SRC_FILE DELTA TIME)
(INIT TIME SRC FILE INIT TIME)

(FORMAT SRC_FILE FORMAT)))
EXECUTE)

IF (SRC_FILE FFT SIZE ¥)
THEN (SIGEX GOAL FFT)

(SIGEX SIG_COMMAND (FFT (FFT_SIZE SRC FILE FFT_SIZE)))
EXECUTE)

- 15 -

When the interface receives a request from SIGEX it uses the
information stored by SIGEX and the table fo create a syntactically
correct command for SIG. The final command is then written to the SIG
command file. The LISP interpreter is then suspended through the use
of the VMS interface in NIL, and a VMS DCL command file is executed.
The DCL command file starts SIG and causes SIG to execute commands
from the SIG command file. When SIG finishes control is returned to
VMS and the LISP interpreter is restarted. The interpreter then
resumes where 1% was suspended, and the controlier continues.

5.0 Conclusions and Observations

The development of SPEC went through several intermediate

programs, and the progress of these programs was demonstrated to
interested personnel. When SPEC was completed it was demonstrated to
potential users. These users are primarily interested in simple
frequency analysis and, in fact, much of their work is repetitive.
It was my hope that the users would see the utility of SPEC and want
to use it for more complex problems which they had not been able to
address because of lack of time to learn new signal processing codes
and techniques.

However, the users had no experience with interactive signal
processing codes such as SIG. At that time, their signal processing
was done by batch runs on a CDC 7600 using an analysis code written in
the mid-70's. However, there was another project underway to combine
their data acquisition and signal processing operations into a single
computer system which included menu-driven signal processing software,
It may not be surprising, therefore; that the users expressed little
interest in SPEC and felt that the anticipated system would adequately
handle their signal processing problems.

Although it was decided not to develop the prototype SPEC into a
working system, the project provided several insights into expert
system technology and man-machine interfaces which may be applicable
to future work. First, a menu system is a better choice as an
interface if the set of problems being solved is small. If there
really are only a few functions to be done, then the menu system may
very well capture those functions in an easy-to—-us= manner with a
small number of menus. In fact, SIG has heen designed to handle this
class of problems very well.

To handle those users who want to solve a wider range of problems
than could be easily enumerated on menus SIG provides an interface
using a command language and allows processing of the language via
command files. With this command language users can easily generate
procedures which perform a variety of ad hoc signai processing
techniques. But to really take advantage of this capability the user
must learn the intricacies of SIG command format:s and understand
signal processing very well.

The intent of SPEC was to first eliminate the need to learn what
SIG commands do and the command formats and then to provide a
framework upon which enough signal processing knowledge could be added
later to eventually assist users in the development of specialized
signal processing techniques. However, the amount of knowledge
captured in SPEC was too small to generate interesting signal
processing techniques. It is certainly true that SPEC succeeded in
freeing the user from understanding or even knowing any SIG commands
or the exact formats of the SIG commands. But it was too difficult to
appreciate the "expertise" required to generate these SIG commands
because the range of problems that the knowledge base could solve was
so simple that a simple menu system or minimum knowledge of SIG
commands could have been used just as well.

Second, even though SPEC executes as compiled code it is too slow
for an interactive environment. There were two reasons for tne slow
speed; first, the computer resources were not dedicated to SPEC. The
code was running on a time—shared VAX 30 response was not consistent.
Second, even at its best, the performance was too slow because the
code was not optimized in any way. One of the major problems was that
linear search was used to find applicable rules.

Third, the English-like interface was useful but not much easier
to use than an artificial language with a rigid syntax. The use of
keywords and many special constructions made the language almost as
difficult to use as memorizing simple SIG commands. For the limited
domain of interest a menu system would have been easier., An
English-1like interface could be very useful if the range of problems
being solved is too large for a simple menu, but the interface must
have a truly natural language capability; the interface must allow
users to formulate requests without construction limitations and must
provide spelling correction.

Fourth, the system asked the user too many questions. To avoid
making incorrect assumptions, the system checked each decision by
asking the user to verify the each assumption. This verification
technique reduced the chance of doing the wrong operation, but it made
the interface too time consuming. The user could not simply enter a
request and walk away. The user had to actually be present through
each stage of the request. Some of this problem could have been
avoided if the interface to SIG had processed several SIG commands at
one time instead of a single command.

The system must make more "intelligent!" assumptions on its own.
For example, the system might tailor the questions to the "nistory" of
the user. After a user has answered these types of questions several
times, perhaps the system could assume that the user is an experienced
user and not prompt for verification. Alternatively, the system could
be designed to use default values unless values are explicitedly
provided in the English input and to modify dynamically the value for

defaults. The assumptions could be displayed for the user at some
later time.

- 17 -

6.0 Summary

SPEC was a successful demonstration of the use of expert systems
technology to assist users in the use of a signhal processing code.
The system established that it is possible to free the user from
having to know the commands and command formats which are needed to do
signal processing in the frequency domain using the code SIG.

However, SPEC did not provide a better interface for SIG users
than the menu system. The system was too slow and the signal
processing knowledge was too limited. Users could have just as easily
solved this class of problems using a simple menu system.

Appendix A. Sample SPEC Dialogue
A.1 Plot fft of some data
WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

? DO FFT ON FILE ABC <CR>

I WILL ASSUME THE FILE ABC CONTAINS TIME DATA ? (OK? Y OR N) Y <CR>

I WILL ASSUME THE FILE ABC IS ALREADY IN
THE PROPER SIG FORMAT ? (OK? Y OR N) Y <CR>

[SIG reads the file ABC]
I WILL USE ALL THE POINTS IN SIGNAL IN THE FFT ? (OK? Y OR N) Y <CR>
[SIG does fft on the file ABC]

I WILL LABEL THE PLOT TEST ? (OK? Y OR N) Y <CR>

- 19 -

TYPE

<CR> TO CONTINUE <CR>

DS #2 RBC
1884
eg+
{
60 A
o
0
Z 1
o } !
% o
[:
: !
! i
404 | E
S
.
} : Lo
! i H
: v
; L
\ I
| |
i } L
20 4 | ; !
) v |
|
)] — — ' '
8 8.1 8.2 @.3 2.
Frequency

Figure 4,1

FFT Plot of Fil

- 20 -

A.2 Time plot

WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

? LET ME SEE THE TIME PLOT <CR>

I WILL LABEL THE PLOT TEST ? (OK? Y OR N) Y <CR>

- 21 =

TYPE <CR> TO CONTINUE <CR>

10

DS #1 RBC

21

-a.

-4

10 ze Y 20 S0
Time

Figure A.2 Time plot of file ABC

- 22 -~

60

A.3 Plot another fft

WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

? NOW DO THE FILE XYZ <CR>

I DON'T RECOGNIZE ANY WORD AS A COMMAND.
DO YOU MEAN TO DO THE COMMAND PLOT (Y OR N)? N <CR>

WHAT DO YOU WANT TO DO? FFT <CR>
I WILL ASSUME THE FILE XYZ CONTAINS TIME DATA ? (OK? Y OR N) Y <CR>

I WILL ASSUME THE FILE XYZ IS ALREADY IN
THE PROPER SIG FORMAT ? (OK? Y OR N) Y <CR>

[SIG reads the file XYZ]
I WILL USE ALL THE POINTS IN SIGNAL IN THE FFT ? (QK? Y OR N) Y <CR>
[SIG does fft on the file XYZ]

I WILL LABEL THE PLOT TEST ? (OK? Y OR N) Y <CR>

- 23 -

TYPE <CR> TO CONTINUE <CR>

DS #4 xvyZ
280 L n . .

240 -

200 1

160 -

(C) Mag

129

49

@ e.1 8.2 e.3 2.4
Frequency

Pigure A.3 FFT plot of file XY7

A.b4 Filter some data

WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

? FILTER FILE XYZ AND DO FFT AGAIN <CR>

I WILL USE A BESSEL FILTER ON THE FILE XYZ ? (OK? Y OR N) N <CR>
WHAT TYPE OF FILTER DO YOU WANT TO USE ON FILE XYZ? HELP <CR>

VALID RESPONSES ARE AS FOLLOWS:
DEFAULT IS BESSEL

BESSEL BESS BES

BUTTERWORTH BUTTER BUT

HIT <CR> TO CONTINUE <CR>

WHAT TYPE OF FILTER DO YOU WANT TO USE ON FILE XYZ? BESS <CR>

I ASSUME YOU WANT TO USE A LOW PASS FILTER ? (OK? Y OR N) Y <CR>

AT WHAT FREQ DO YOU WANT TO THE FILTER TO BEGIN CHOPPING OFF THE DATA?
2<CR>

I WILL ASSUME A FIRST ORDER FILTER ? (OK? Y OR N) Y <CR>
[SIG does Bessel filter on file XYZ]

I WILL USE ALL THE POINTS IN SIGNAL IN THE FFT ? (OK? Y OR N) Y <CR>
[SIG does fft on the filtered file XYZ]

I WILL LABEL THE PLOT TEST ? (OK? Y OR N) Y <CR>

- 25 -

TYPE <CR> TO CONTINUE <CR>

DS #6 XvZ
30 I
2s 4
20 -
o
L]
o
o
154
104
5-
£-4
2 v T T L
2 2.1 2.2 2.3 2.4

Frequency

Figure A.4t FFT plot of filtered file XYZ

- 26 -

A.5 Plot original time data

WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

? SHOW ME THE TIME PLOT OF ORIGINAL DATA <CR>

OK...

THE QUALIFICATION TYPE ORIGINAL IN YOUR REQUEST IS NOT
RECOGNIZABLE TYPE ?, OR QUIT, <CR> TO IGNORE IT, OR A DIFFERENT
QUALIFICATION 72 <CR>

THE VALID QUALIFIERS ARE AS FOLLOWS:
FITLER FILTERED
FFT FOURIER TRANSFORM
IFF INVERSE FFT
PSD SPECTRUM
RAW_TIME RAW TS TIME
RAW_FREQ RAW FS FREQUENCY
HIT <CR> TO CONTINUE <CR>

TYPE ?, OR QUIT, <CR> TO IGNORE IT, OR A DIFFERENT
QUALIFICATION <CR>

I WILL LABEL THE PLOT TEST ? (OK? Y OR N) Y <CR>

- 27 -

TYPE <CR> TO CONTINUE <CR>

1@

DS #3 XyZ

A —— o L .

71

10 20 39 Py EY)) 70
Time

Figure A.5 Time plot of file XYZ

_ 28 -

A.6 Exit SPEC

WELCOME TO THE SIGNAL PROCESSING EXPERT
LINE CONTINUATION IS &

? QUIT <CR>

ALL DONE
NIL

- 29 -

Appendix B, Format of English-like Template File

((keyword-statement) (phrase-statement) ... (phrase-statement))
((keyword-statement) {phrase-statement) ... (phrase-statement))
((END))

WHERE keyword-statement has the following format:
(keyword-list ... keyword-list = parameter value)

WHERE keyword-list any literal or list of literals to be
used as a keyword

parameter any attribute to be passed to the
inference engine
valuecu0.. a literal to be passed as the value

of the attribute to the inference engine

WHERE phrase-statement has the following format:
(phrase-list ... phrase-list = parameter value)

WHERE phrase-list any literal or 1list of literals to
be used as a phrase

parameter any attribute to be passed to the
inference engine
value . .,a literal to be passed as a

value the attribute to the

engine. If the value is the symbol "?"
then the next word from the English
sentence is used as the value.

- 30 -

APPENDIX C. Rule File Format

(OBJECT object-type attribute procedure message-question range)

(OBJECT object-type attribute procedure message-question range)

(RULE id IF (premise) ... (premise)
THEN (conclusion) ... (conclusion)
EXCUTE (action) ... (action))

(RULE id IF (premise) ... (premise)
THEN (conclusion) ... (conclusion)
EXCUTE (action) ... (action))

(END)

- 31 -

APPENDIX C. Rule File Format (continued)

WHERE object-type the name of a class of objects
attribute a characteristic of the object
procedure the name of a function to be called to get

the value of the attribute
message—question .. a prompt to get the value of the attribute
Fange ..uveeeecesos. list of possible values for the attribute

WHERE message—-question has the following format:

((message) (question))

WHERE message text to be printed before the question
question text to prompt the user for the value of an
attribute

WHERE range has the following format:
((DEFAULT value) (% predicate) (value (synonym ... synonym)) ...)

WHERE DEFAULT defines the value to be used if user wants
the default value for the attribute
predicate the predicate which will be used to
value entered by the user.

WHERE id unique identification for a rule
premise statement to check the value of an attribute
conclusion .. statement which sets the value of an attribute
action function to be executed when the rule premises are
true

WHERE premise has the following format:

{object-type attribute value)

WHERE object-type somé object-type
attribute characteristic of an object
valueciiiiiannn the literal value to be checked

against the current value of the
attribute for the object

WHERE conclusion has the following format:

(object-type attribute value)

WHERE object-type some object-type
attribute characteristic of an object
VAlUe . iieeennnnens the literal value to be used to set

the current value of the attribute
for the object

- 32 -

APPENDIX C. Rule File Format (continued)

WHERE object-type the name of a class of objects
attribute a characteristic of the object
procedure the name of a function to be called to get

the value of the attribute
message—question ,. a prompt to get the value of the attribute
Fangevveeesna list of possible values for the attribute

WHERE message—question has the following format:
(blank)
<line>»
((message) (question))

WHERE message text to be printed before the question
question text to prompt the user for the value of an
attribute

WHERE range has the following format:
{ (DEFAULT value) (% predicate) (value (synonym ... synonym)) ...)

WHERE DEFAULT defines the value to be used if user wants
the default value for the attribute
predicate the predicate which will be used to
value entered by the user.

WHERE id unique identification for a rule
premise statement to check the value of an attribute
conclusion ., statement which sets the value of an attribute
action function to be executed when the rule premises are
true

WHERE premise has the following format:

(object-type attribute value)

WHERE object-type some object-type
attribute characteristic of an object
value ... 0., the literal value to be checked

against the current value of the
attribute for the object

WHERE conclusion has the following format:

{(object-type attribute value)

WHERE object~type some object—-type
attribute characteristic of an object
valuecuivnn the literal value to be used to set

the current value of the attribute
for the object

APPENDIX C. Rule File Format (continued)
WHERE action has the following format:
(function-name any text)
WHERE function—-name the name of a function to be
executed when all the premises of a
rule are true.

any text text to be passed to function
function—name

~ 3 -

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of
Terry Coupe on this project.

